271 research outputs found

    Multiscale modeling of twitch contractions in cardiac trabeculae

    Get PDF
    © 2021 Mijailovich et al. Understanding the dynamics of a cardiac muscle twitch contraction is complex because it requires a detailed understanding of the kinetic processes of the Ca2+ transient, thin-filament activation, and the myosin-actin cross-bridge chemomechanical cycle. Each of these steps has been well defined individually, but understanding how all three of the processes operate in combination is a far more complex problem. Computational modeling has the potential to provide detailed insight into each of these processes, how the dynamics of each process affect the complexity of contractile behavior, and how perturbations such as mutations in sarcomere proteins affect the complex interactions of all of these processes. The mechanisms involved in relaxation of tension during a cardiac twitch have been particularly difficult to discern due to nonhomogeneous sarcomere lengthening during relaxation. Here we use the multiscale MUSICO platform to model rat trabecular twitches. Validation of computational models is dependent on being able to simulate different experimental datasets, but there has been a paucity of data that can provide all of the required parameters in a single experiment, such as simultaneous measurements of force, intracellular Ca2+ transients, and sarcomere length dynamics. In this study, we used data from different studies collected under similar experimental conditions to provide information for all the required parameters. Our simulations established that twitches either in an isometric sarcomere or in fixed-length, multiple-sarcomere trabeculae replicate the experimental observations if models incorporate a length-tension relationship for the nonlinear series elasticity of muscle preparations and a scheme for thick-filament regulation. The thick-filament regulation assumes an off state in which myosin heads are parked onto the thick-filament backbone and are unable to interact with actin, a state analogous to the super-relaxed state. Including these two mechanisms provided simulations that accurately predict twitch contractions over a range of different conditions

    Real-time optical manipulation of cardiac conduction in intact hearts

    Get PDF
    Optogenetics has provided new insights in cardiovascular research, leading to new methods for cardiac pacing, resynchronization therapy and cardioversion. Although these interventions have clearly demonstrated the feasibility of cardiac manipulation, current optical stimulation strategies do not take into account cardiac wave dynamics in real time. Here, we developed an all‐optical platform complemented by integrated, newly developed software to monitor and control electrical activity in intact mouse hearts. The system combined a wide‐field mesoscope with a digital projector for optogenetic activation. Cardiac functionality could be manipulated either in free‐run mode with submillisecond temporal resolution or in a closed‐loop fashion: a tailored hardware and software platform allowed real‐time intervention capable of reacting within 2 ms. The methodology was applied to restore normal electrical activity after atrioventricular block, by triggering the ventricle in response to optically mapped atrial activity with appropriate timing. Real‐time intraventricular manipulation of the propagating electrical wavefront was also demonstrated, opening the prospect for real‐time resynchronization therapy and cardiac defibrillation. Furthermore, the closed‐loop approach was applied to simulate a re‐entrant circuit across the ventricle demonstrating the capability of our system to manipulate heart conduction with high versatility even in arrhythmogenic conditions. The development of this innovative optical methodology provides the first proof‐of‐concept that a real‐time optically based stimulation can control cardiac rhythm in normal and abnormal conditions, promising a new approach for the investigation of the (patho)physiology of the heart

    Quartz crystal microbalance genosensing of brettanomyces bruxellensis yeast in wine using a rapid and efficient drop and collect protocol

    Get PDF
    A miniaturized quartz crystal microbalance (QCM) genosensor is proposed for sensitive and real-time detection of short ssDNA sequences (53 bp) or DNA extracted from Brettanomyces bruxellensis (Brett) yeast cells. The presence of Brett yeast causes a depreciation of the quality of aged fine wines, producing molecules of unpleasant odors and biogenic amines that are harmful to human health. More specifically, standard quartz crystal (S-QCM) and homemade 4 nm gold transmission electron microscopy (TEM)-grid patterned quartz (multi-TEM QCM) are herein proposed for biofunctionalization steps with different ssDNA sequences. By employing a rapid and efficient drop and collect protocol, the specific detection of 1 pg/\ub5L ssDNA Brett of a short sequence and 100 ng/\ub5L DNA of B. bruxellensis extracted from a wine sample (VR2008) is reported

    Acoustic multi-detection of Gliadin using QCM crystals patterned with controlled sectors of tem grid and annealed Nanoislands on gold electrode

    Get PDF
    Celiac diseases are a group of gluten ingestion-correlated pathologies that are widespread and, in some cases, very dangerous for human health. The only effective treatment is the elimination of gluten from the diet throughout life. Nowadays, the food industries are very interested in cheap, easy-to-handle methods for detecting gluten in food, in order to provide their consumers with safe and high-quality food. Here, for the first time, the manufacture of controlled micropatterns of annealed gold nanoislands (AuNIs) on a single QCM crystal (QCM-color) and their biofunctionalization for the specific detection of traces of gliadin is reported. In addition, the modified quartz crystal with a TEM grid and 30 nm Au (Q-TEM grid crystal) is proposed as an acoustic sensitive biosensing platform for the rapid screening of the gliadin content in real food products
    corecore